超详细的堆排序,进来看看吧。

1.堆的基本概念

1.1什么是堆

堆是一种叫做完全二叉树的数据结构,

1.2大堆和小堆

大堆:每个节点的值都大于或者等于他的左右孩子节点的值

小根堆:每个结点的值都小于或等于其左孩子和右孩子结点的值

1.3完全二叉树节点之间的关系

  • leftchild = parent*2 + 1

  • rightchild = parent*2 + 2

  • parent = (child - 1) / 2

1.4堆这个数据结构的实现

heap.h//需要实现的功能列表

#pragma once
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
typedef int HPDataType;
typedef struct Heap
{
    HPDataType* _a;
    int _size;
    int _capacity;
}Heap;

// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);
// 堆的销毁
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);

heap.c

堆的向上调整和向下调整

(只能处理一次,创建大小堆的时候需要反复调用)

void Swap(HPDataType* x1, HPDataType* x2)
{
    HPDataType tmp = *x1;
    *x1 = *x2;
    *x2 = tmp;
}

void AdjustDown(HPDataType* a, int n, int root)//孩子不断向下
{
    int parent = root;
    int child = parent * 2 + 1;//初始化成左孩子
    while (child < n)
    {
        // 选左右孩纸中大的一个
        if (child + 1 < n
            && a[child + 1] > a[child])
        {
            ++child;
        }

        //如果孩子大于父亲,进行调整交换 
        if (a[child] > a[parent])
        {
            Swap(&a[child], &a[parent]);
            parent = child;
            child = parent * 2 + 1;
        }
        else
        {
            break;
        }
    }
}

void AdjustUp(HPDataType* a, int n, int child)//孩子不断向上
{
    int parent;
    assert(a);
    parent = (child - 1) / 2;
    while (child > 0)
    {
        //如果孩子大于父亲,进行交换
        if (a[child] > a[parent])
        {
            Swap(&a[parent], &a[child]);
            child = parent;
            parent = (child - 1) / 2;
        }
        else
        {
            break;
        }
    }
}

定义出堆的数据结构

typedef int HPDataType;
typedef struct Heap
{
    HPDataType* arr;
    int size;
    int capacity;
}Heap;

初始化一个堆

void HeapInit(Heap* hp, HPDataType* a, int n)
{
    int i;
    assert(hp && a);
    hp->arr = (HPDataType*)malloc(sizeof(HPDataType) * n);
    hp->size = n;
    hp->capacity = n;

    for (i = 0; i < n; ++i)
    {
        hp->arr[i] = a[i];
    }

    // 建堆: 从最后一个非叶子节点开始进行调整
    // 最后一个非叶子节点,按照规则: (最后一个位置索引 - 1) / 2
    // 最后一个位置索引: n - 1
    // 故最后一个非叶子节点位置: ((n - 1) / 2)-1
    for (i = (n - 2) / 2; i >= 0; --i)
    {
        AdjustDown(hp->arr, hp->size, i);
    }  
    //for (i = 1; i < n; i++)
    //{
    //    AdjustUp(hp->arr,hp->size, i);
    //}
}

// 建堆: 从最后一个非叶子节点开始进行调整

// 最后一个非叶子节点,按照规则: (最后一个位置索引 - 1) / 2

// 最后一个位置索引: n - 1

// 故最后一个非叶子节点位置: ((n - 1) / 2)-1

  • 我们向下调整来建堆时,要保证当前要调整的节点的左右子树都已经是堆后,才可以向下调整。所以我们要从倒数第一个非叶子结点开始调整

  • 向上调整来建立堆的时候,要保证要调整的节点前面已经是一个合法的堆才行——为了达到这个目的,我们在向上建堆的时候,就需要从数组的第二个元素开始

堆的插入和删除

我们需要注意的是插入删除后我们仍需保持调整后的数组仍是一个堆

void HeapPush(Heap* hp, HPDataType x)
{
    assert(hp);
    //检查容量
    if (hp->size == hp->capacity)
    {
        hp->capacity *= 2;
        hp->arr = (HPDataType*)realloc(hp->arr, sizeof(HPDataType) * hp->capacity);
    }
    //尾插
    hp->arr[hp->size] = x;
    hp->size++;
    //向上调整
    AdjustUp(hp->arr, hp->size, hp->size - 1);//因为数据插在尾向不会打乱已有关系,可以直接向上调整
}

void HeapPop(Heap* hp)
{
    assert(hp);
    //交换
    Swap(&hp->arr[0], &hp->arr[hp->size - 1]);
    hp->size--;
    //向下调整
    AdjustDown(hp->arr, hp->size, 0);
}

HPDataType HeapTop(Heap* hp)
{
    assert(hp);
    return hp->arr[0];
}

int HeapSize(Heap* hp)
{
    return hp->size;
}

int HeapEmpty(Heap* hp)
{
    return hp->size == 0 ? 0 : 1;
}

void HeapPrint(Heap* hp)
{
    int i;
    for (i = 0; i < hp->size; ++i)
    {
        printf("%d ", hp->arr[i]);
    }
    printf("\n");
}

堆的插入,因为数据插在尾向不会打乱已有关系,可以直接向上调整。

堆的删除,因为是删除堆顶的数据,为了防止打乱已有关系,交换数据后向下调整,构建一个新的堆。

测试test.c

void test(void)
{
    Heap hp;
    int arr[] = { 0,4,13,45,32,45,2,56,33,32 };
    HeapInit(&hp, arr, sizeof(arr) / sizeof(arr[0]));
    HeapPrint(&hp);
}

int main()
{
    test();
    //TestHeap1();
}

2.向上调整建堆和向下调整建堆的区别

2.1向上调整建堆

时间复杂度计算的是其调整的次数,根据上文的知识我们已经知晓其是从数组的第二个元素开始的,也就是可以理解为第二层的第一个节点。计算的思想非常简单:计算每层有多少个节点乘以该层的高度次,然后累计相加即可。

2.2向下调整建堆

向下调整我们前面已经知道它是从倒数第1个非叶节点开始调整的

每层的调整次数为:该层的节点个数*该层高度减1

一直从倒数第2层开始调直至第1层,并将其依次累加,累加的计算过程和向上调整差不多,都是等比*等差的求和,(但不同的是:每层的调整次数不同)

3.堆的应用

2.1堆排序

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:每个结点的值都大于等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于等于其左右孩子结点的值,称为小顶堆。该算法时间复杂度为O(n log n)。

堆排序算法的原理如下:

​ 1.将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;

​ 2.将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];

​ 3.由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

void HeapSort(Heap* hp, int n)
{
    // 向上调整建堆 -- N*logN
    /*for (int i = 1; i < n; ++i)
    {
    AdjustUp(a, i);
    }*/

    // 向下调整建堆 -- O(N)
    // 升序:建大堆,把最大的依次拿到下面去
    for (int i = (n - 1 - 1) / 2; i >= 0; --i)
    {
        AdjustDown(hp->arr, n, i);
    }

    // O(N*logN)
    int end = n - 1;
    while (end > 0)
    {
        Swap(&hp->arr[end],&hp->arr[0]);
        AdjustDown(hp->arr, end, 0);
        --end;
    }
}

2.2 topK问题

从n个数据中选出排在前k个的数据。

建一个小堆,堆里假设就是前k个数据,如果有比堆顶大的数据则弹出堆顶数据,在插入新的数据,然后向下调整堆,得到新的小堆,如此往复,直到读完n个数据。

//1. 找最大的K个元素
//假设堆为小堆
void PrintTopK(int* a, int n, int k)
{
    Heap hp;
    //建立含有K个元素的堆
    HeapInit(&hp, a, k);
 
    for (size_t i = k; i < n; ++i)  // N
    {
        //每次和堆顶元素比较,大于堆顶元素,则删除堆顶元素,插入新的元素
        if (a[i] > HeapTop(&hp)) // LogK
        {
            HeapPop(&hp);
            HeapPush(&hp, a[i]);
        }
    }
    for(int i = 0; i < k; ++i){
        printf("%d ",HeapTop(&hp));
        HeapPop(&hp);
    }
}
 
//2. 找最小的K个元素
//假设堆为大堆
void PrintTopK(int* a, int n, int k)
{
    Heap hp;
    //建立含有K个元素的堆
    HeapInit(&hp, a, k);
 
    for (size_t i = k; i < n; ++i)  // N
    {
        //每次和堆顶元素比较,小于堆顶元素,则删除堆顶元素,插入新的元素
        if (a[i] < HeapTop(&hp)) // LogK
        {
            HeapPop(&hp);
            HeapPush(&hp, a[i]);
        }
    }
    for(int i = 0; i < k; ++i){
        printf("%d ",HeapTop(&hp));
        HeapPop(&hp);
    }
}

用大数据测一下

void TestTopk()
{
    int n = 1000000;
    int* a = (int*)malloc(sizeof(int) * n);
    srand(time(0));
    //随机生成10000个数存入数组,保证元素都小于1000000
    for (size_t i = 0; i < n; ++i)
    {
        a[i] = rand() % 1000000+1000000;
    }
    //确定10个最大的数
    a[5] = 1;
    a[1231] =  2;
    a[531] =  3;
    a[5121] = 4;
    a[115] = 5;
    a[2335] = 6;
    a[9999] =  7;
    a[76] = 8;
    a[423] = 9;
    a[3144] = 10;

    PrintTopK(a, n, 10);
}
int main()
{
    test();
    //TestHeap1();
    TestTopk();
}

4.附带一张排序算法的表(仅供参考)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.kler.cn/a/1357.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ESP32设备驱动-LM35温度传感器驱动

LM35温度传感器驱动 文章目录 LM35温度传感器驱动1、LM35介绍2、硬件准备3、软件准备4、驱动实现1、LM35介绍 LM35 系列是精密集成电路温度传感器,其输出电压与摄氏(摄氏度)温度成线性比例。 因此,LM35 优于以开尔文校准的线性温度传感器,因为用户无需从其输出中减去较大…

深入理解WebSocket协议

“ 一直以来对WebSocket仅停留在使用阶段&#xff0c;也没有深入理解其背后的原理。当看到 x x x was not upgraded to websocket&#xff0c;我是彻底蒙了&#xff0c;等我镇定下来&#xff0c;打开百度输入这行报错信息&#xff0c;随即看到的就是大家说的跨域&#xff0c;或…

Ribbon负载均衡的原理(源码分析)

SpringCloud底层其实是利用了一个名为Ribbon的组件&#xff0c;来实现负载均衡功能的。1&#xff09;LoadBalancerIntercepor可以看到这里的intercept方法&#xff0c;拦截了用户的HttpRequest请求&#xff0c;然后做了几件事&#xff1a;1.request.getURI()&#xff1a;获取请…

网络编程1(网络背景知识)

A给B发送消息如何保证数据一定能够发送到B的主机上&#xff0c;而不是其他地方 通过IP地址可以实现网络中制定的两个主机之间的通信&#xff0c;除此之外还要确定是哪个进程来处理&#xff0c;这里就用到端口&#xff08;port&#xff09; 端口—在一台主机上用于唯一标识一个…

全面剖析OpenAI发布的GPT-4比其他GPT模型强在哪里

最强的文本生成模型GPT-4一、什么是GPT-4二、GPT-4的能力三、和其他GPT模型比较3.1、增加了图像模态的输入3.2、可操纵性更强3.3、复杂任务处理能力大幅提升3.4、幻觉、安全等局限性的改善3.6、风险和缓解措施改善更多安全特性3.7、可预测的扩展四、与之前 GPT 系列模型比较五、…

win10下使用docker运行部署nginx,mysql

一、docker的步骤&#xff1a;1.进入docker官网下载安装包2.打开控制面板 - 程序和功能 - 启用或关闭Windows功能&#xff0c;勾选Hyper-V&#xff0c;然后点击确定即可&#xff0c;如图&#xff1a;3.重新启动电脑4.启动Docker在桌面找到Docker for Windows快捷方式&#xff0…

java如何创建线程

java如何创建线程1. java如何创建线程1.1 通过继承Thread类来创建线程1.2 通过实现Runnable接口来创建线程1.3 通过匿名内部类来创建线程1.4 lambda表达式1.5 通过实现Runnable接口的方式创建线程目标类的优缺点1. java如何创建线程 一个线程在Java中使用一个Thread实例来描述…

JVM监控搭建

文章目录JVM监控搭建整体架构JolokiaTelegrafInfluxdbGrafanaJVM监控搭建 整体架构 JVM 的各种内存信息&#xff0c;会通过 JMX 接口进行暴露。 Jolokia 组件负责把 JMX 信息翻译成容易读取的 HTTP 请求。Telegraf 组件作为一个通用的监控 agent&#xff0c;和 JVM 进程部署在…

改进YOLO系列 | CVPR2023最新 PConv | 提供 YOLOv5 / YOLOv7 / YOLOv7-tiny 模型 YAML 文件

DWConv是Conv的一种流行变体,已被广泛用作许多神经网络的关键构建块。对于输入 I ∈ R c h w I \in R^{c \times h \times w} I∈

*p++,*(p++),*++p,(*p)++区别?

*p++:等同于:*p; p += 1; 解析:由于和++的运算优先级一样,且是右>结合。故p++相当于*(p++),p先与++结合,>然后p++整体再与结合。前面陈述是一种最 常见的错误,很多初学者也是这么理解的。 但是,因为++后置的时候,本身含义就是先 运算后增加1(运算指的是p++作为…

GPT-4来了!看看她究竟强在哪里!

GPT-4来了&#xff01;OpenAI老板Sam Altman直接开门见山地介绍说&#xff1a;这是我们迄今为止功能最强大的模型&#xff01;GPT-4是一个超大的多模态模型&#xff0c;也就是说&#xff0c;它的输入可以是文字&#xff08;上限2.5万字&#xff09;&#xff0c;还可以是图像。我…

大学四年..就混了毕业证的我,出社会深感无力..辞去工作,从头开始

时间如白驹过隙&#xff0c;一恍就到了2023年&#xff0c;今天最于我来说是一个值得纪念的日子&#xff0c;因为我收获了今年的第一个offer背景18年毕业&#xff0c;二本。大学四年&#xff0c;也就将就混了毕业证和学位证。毕业后&#xff0c;并未想过留在湖南&#xff0c;就回…

动手实现一遍Transformer

最近乘着ChatGpt的东风&#xff0c;关于NLP的研究又一次被推上了风口浪尖。在现阶段的NLP的里程碑中&#xff0c;无论如何无法绕过Transformer。《Attention is all you need》成了每个NLP入门者的必读论文。惭愧的是&#xff0c;我虽然使用过很多基于Transformer的模型&#x…

【2024考研】计算机考研,4轮复习时间安排

文章目录&#x1f3a8;第1轮复习&#xff08;暑假前&系统课&#xff09;英语1/2数学1/2专业课408&#x1f3a8;第2轮复习&#xff08;开学前&真题&#xff09;英语1/2试卷数学1/2试卷专业课408试卷&#x1f3a8;第3轮复习&#xff08;报名前&政治&#xff09;政治试…

基于stm32mp157 linux开发板ARM裸机开发教程Cortex-A7 开发环境搭建(连载中)

前言&#xff1a;目前针对ARM Cortex-A7裸机开发文档及视频进行了二次升级持续更新中&#xff0c;使其内容更加丰富&#xff0c;讲解更加细致&#xff0c;全文所使用的开发平台均为华清远见FS-MP1A开发板&#xff08;STM32MP157开发板&#xff09;针对对FS-MP1A开发板&#xff…

redis持久化的几种方式

一、简介 Redis是一种高级key-value数据库。它跟memcached类似&#xff0c;不过数据可以持久化&#xff0c;而且支持的数据类型很丰富。有字符串&#xff0c;链表&#xff0c;集 合和有序集合。支持在服务器端计算集合的并&#xff0c;交和补集(difference)等&#xff0c;还支持…

文心一言发布,你怎么看?chatGPT

百度全新一代知识增强大语言模型“文心一言”于2021年3月16日正式发布&#xff0c;作为一款自然语言处理技术&#xff0c;它引起了广泛的关注和讨论。 首先&#xff0c;文心一言是一款具有重大意义的自然语言处理技术。在人工智能领域&#xff0c;自然语言处理技术一直是一个难…

MySQL索引特性

文章目录为什么要有索引&#xff1f;认识磁盘磁盘的结构磁盘的盘片结构定位扇区磁盘随机访问 (Random Access)与连续访问 (Sequential Access)MySQL与磁盘交互索引的理解测试主键索引索引的原理索引结构是否可以使用其他数据结构B树 vs B树聚簇索引 vs 非聚簇索引为什么要有索引…

【完整代码】用HTML/CSS制作一个美观的个人简介网页

【完整代码】用HTML/CSS制作一个美观的个人简介网页整体结构完整代码用HTML/CSS制作一个美观的个人简介网页——学习周记1HELLO&#xff01;大家好&#xff0c;由于《用HTML/CSS制作一个美观的个人简介网页》这篇笔记有幸被很多伙伴关注&#xff0c;于是特意去找了之前写的完整…

真实的软件测试日常工作是咋样的?

最近很多粉丝问我&#xff0c;小姐姐&#xff0c;现在大环境不景气&#xff0c;传统行业不好做了&#xff0c;想转行软件测试&#xff0c;想知道软件测试日常工作是咋样的&#xff1f;平常的工作内容是什么&#xff1f; 别急&#xff0c;今天跟大家细细说一下一个合格的软件测…
最新文章