[rust] 11 所有权


文章目录

  • 一 背景
  • 二 Stack 和 Heap
    • 2.1 Stack
    • 2.2 Heap
    • 2.3 性能区别
    • 2.4 所有权和堆栈
  • 三 所有权原则
    • 3.1 变量作用域
    • 3.2 String 类型示例
  • 四 变量绑定背后的数据交互
    • 4.1 所有权转移
      • 4.1.1 基本类型: 拷贝, 不转移所有权
      • 4.1.2 分配在 Heap 的类型: 转移所有权
    • 4.2 Clone(深拷贝)
    • 4.3 Copy(浅拷贝)
  • 五 函数传值和返回

一 背景

变成语言都有潜在的内存泄露风险, 目前有三种方案流派:

  • 垃圾回收机制(GC),在程序运行时不断寻找不再使用的内存,典型代表:Java、Go
  • 手动管理内存的分配和释放, 在程序中,通过函数调用的方式来申请和释放内存,典型代表:C++
  • 通过所有权来管理内存,编译器在编译时会根据一系列规则进行检查, 典型代表: Rust

一段不安全的代码如下:

int* foo() {
    int a;          // 变量a的作用域开始
    a = 100;
    char *c = "xyz";   // 变量c的作用域开始
    return &a;
}                   // 变量a和c的作用域结束

这段代码虽然可以编译通过,但是其实非常糟糕,变量 ac 都是局部变量,函数结束后将局部变量 a 的地址返回,但局部变量 a 存在栈中,在离开作用域后,a 所申请的栈上内存都会被系统回收,从而造成了 悬空指针(Dangling Pointer) 的问题。这是一个非常典型的内存安全问题,虽然编译可以通过,但是运行的时候会出现错误, 很多编程语言都存在。

再来看变量 cc 的值是常量字符串,存储于常量区,可能这个函数我们只调用了一次,也可能我们不再会使用这个字符串,但 "xyz" 只有当整个程序结束后系统才能回收这片内存。

所以内存安全问题,一直都是程序员非常头疼的问题,好在, 在 Rust 中这些问题即将成为历史,因为 Rust 在编译的时候就可以帮助我们发现内存不安全的问题,那 Rust 如何做到这一点呢?

二 Stack 和 Heap

Stack 和 Heap 都是 os 里的数据结构

2.1 Stack

Stack: 其中 Stack 是后进先出, 因为这种实现方式, 所以 Stack 里的所有数据, 都必须占用已知且固定的内存空间. 如果数据的大小都是未知的, 那么取出数据时, 将无法取到你想要的数据.

2.2 Heap

Heap: 而 Heap 则可以存储大小未知, 或可能变化的数据. 当我们向 Heap 放入数据时需要申请一定的内存空间, os 在 Heap 的某处找到一块足够大的空位, 把它标记为已使用, 并返回一个该位置地址的指针, 这个过程称为 allocating (在 Heap 上分配内存).

接着, 该指针会被放入 Stack 中, 因为指针的大小是已知且固定的, 所以后续, 可以通过 Stack 里的指针获取数据在 Heap 上的实际内存位置, 进而访问该数据.

因此, 堆是一种缺乏组织的数据结构。想象一下去餐馆就座吃饭: 进入餐馆,告知服务员有几个人,然后服务员找到一个够大的空桌子(堆上分配的内存空间)并领你们过去。如果有人来迟了,他们也可以通过桌号(栈上的指针)来找到你们坐在哪。

2.3 性能区别

在 Stack 上分配内存, 比在 Heap 上分配内存更快.

因为 push Stack 时, os 无需更慢的系统调用, 只需要把新数据放在 栈顶即可. 而相比之下, 在 Heap 上分配内存则需要更多工作, 这是因为 os 必须先找到一块足够存放数据的内存空间, 并做一些记录来为下一次分配做准备, 而且如果当前进程分配的内存页不足时, 还需要做系统调用来申请更多内存.

2.4 所有权和堆栈

当你的代码调用一个函数时,传递给函数的参数(包括可能指向堆上数据的指针和函数的局部变量)依次被压入栈中,当函数调用结束时,这些值将被从栈中按照相反的顺序依次移除。

因为堆上的数据缺乏组织,因此跟踪这些数据何时分配和释放是非常重要的,否则堆上的数据将产生内存泄漏 —— 这些数据将永远无法被回收。这就是 Rust 所有权系统为我们提供的强大保障。

对于其他很多编程语言,你确实无需理解堆栈的原理,但是在 Rust 中,明白堆栈的原理,对于我们理解所有权的工作原理会有很大的帮助。

三 所有权原则

理解了堆栈,接下来看一下关于所有权的规则,首先请谨记以下规则:

  • Rust 中每一个值都被一个变量所拥有,该变量被称为值的所有者
  • 一个值同时只能被一个变量所拥有,或者说一个值只能拥有一个所有者
  • 当所有者(变量)离开作用域范围时,这个值将被丢弃(drop)

3.1 变量作用域

作用域是一个变量在程序中有效的范围, 假如有这样一个变量:

let s = "hello";

变量 s 绑定到了一个字符串字面值,该字符串字面值是硬编码到程序代码中的。s 变量从声明的点开始直到当前作用域的结束都是有效的:

{                      // s 在这里无效,它尚未声明
    let s = "hello";   // 从此处起,s 是有效的

    // 使用 s
}                      // 此作用域已结束,s不再有效

简而言之,s 从创建开始就有效,然后有效期持续到它离开作用域为止,可以看出,就作用域来说,Rust 语言跟其他编程语言没有区别。

3.2 String 类型示例

之前提到过,本章会用 String 作为例子,因此这里会进行一下简单的介绍,具体的 String 学习请参见 String 类型。

我们已经见过字符串字面值 let s ="hello"s 是被硬编码进程序里的字符串值(类型为 &str )。字符串字面值是很方便的,但是它并不适用于所有场景。原因有二:

  • 字符串字面值是不可变的,因为被硬编码到程序代码中
  • 并非所有字符串的值都能在编写代码时得知

例如,字符串是需要程序运行时,通过用户动态输入然后存储在内存中的,这种情况,字符串字面值就完全无用武之地。 为此,Rust 为我们提供动态字符串类型: String, 该类型被分配到堆上,因此可以动态伸缩,也就能存储在编译时大小未知的文本。

四 变量绑定背后的数据交互

4.1 所有权转移

4.1.1 基本类型: 拷贝, 不转移所有权

先来看一段代码:

let x = 5;
let y = x;

这段代码并没有发生所有权的转移,原因很简单: 代码首先将 5 绑定到变量 x,接着拷贝 x 的值赋给 y,最终 xy 都等于 5,因为整数是 Rust 基本数据类型,是固定大小的简单值,因此这两个值都是通过自动拷贝的方式来赋值的,都被存在栈中,完全无需在堆上分配内存。

整个过程中的赋值都是通过值拷贝的方式完成(发生在栈中),因此并不需要所有权转移。

可能有同学会有疑问:这种拷贝不消耗性能吗?实际上,这种栈上的数据足够简单,而且拷贝非常非常快,只需要复制一个整数大小(i32,4 个字节)的内存即可,因此在这种情况下,拷贝的速度远比在堆上创建内存来得快的多。实际上,上一章我们讲到的 Rust 基本类型都是通过自动拷贝的方式来赋值的,就像上面代码一样。

4.1.2 分配在 Heap 的类型: 转移所有权

然后再来看一段代码:

let s1 = String::from("hello");
let s2 = s1;

此时,可能某个大聪明( 善意昵称 )已经想到了:嗯,上面一样,把 s1 的内容拷贝一份赋值给 s2,实际上,并不是这样。之前也提到了,对于基本类型(存储在栈上),Rust 会自动拷贝,但是 String 不是基本类型,而且是存储在堆上的,因此不能自动拷贝。

实际上, String 类型是一个复杂类型,由存储在栈中的堆指针字符串长度字符串容量共同组成,其中堆指针是最重要的,它指向了真实存储字符串内容的堆内存,至于长度和容量,如果你有 Go 语言的经验,这里就很好理解:容量是堆内存分配空间的大小,长度是目前已经使用的大小。

总之 String 类型指向了一个堆上的空间,这里存储着它的真实数据,下面对上面代码中的 let s2 = s1 分成两种情况讨论:

  1. 拷贝 String 和存储在堆上的字节数组 如果该语句是拷贝所有数据(深拷贝),那么无论是 String 本身还是底层的堆上数据,都会被全部拷贝,这对于性能而言会造成非常大的影响
  2. 只拷贝 String 本身 这样的拷贝非常快,因为在 64 位机器上就拷贝了 8字节的指针8字节的长度8字节的容量,总计 24 字节,但是带来了新的问题,还记得我们之前提到的所有权规则吧?其中有一条就是:一个值只允许有一个所有者,而现在这个值(堆上的真实字符串数据)有了两个所有者:s1s2

好吧,就假定一个值可以拥有两个所有者,会发生什么呢?

当变量离开作用域后,Rust 会自动调用 drop 函数并清理变量的堆内存。不过由于两个 String 变量指向了同一位置。这就有了一个问题:当 s1s2 离开作用域,它们都会尝试释放相同的内存。这是一个叫做 二次释放(double free) 的错误,也是之前提到过的内存安全性 BUG 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。

因此,Rust 这样解决问题:s1 被赋予 s2 后,Rust 认为 s1 不再有效,因此也无需在 s1 离开作用域后 drop 任何东西,这就是把所有权从 s1 转移给了 s2s1 在被赋予 s2 后就马上失效了

再来看看,在所有权转移后再来使用旧的所有者,会发生什么:

let s1 = String::from("hello");
let s2 = s1;

println!("{}, world!", s1);

由于 Rust 禁止你使用无效的引用,你会看到以下的错误:

error[E0382]: borrow of moved value: `s1`
 --> src/main.rs:5:28
  |
2 |     let s1 = String::from("hello");
  |         -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
3 |     let s2 = s1;
  |              -- value moved here
4 |
5 |     println!("{}, world!", s1);
  |                            ^^ value borrowed here after move
  |
  = note: this error originates in the macro `$crate::format_args_nl` which comes from the expansion of the macro `println` (in Nightly builds, run with -Z macro-backtrace for more info)
help: consider cloning the value if the performance cost is acceptable
  |
3 |     let s2 = s1.clone();
  |                ++++++++

For more information about this error, try `rustc --explain E0382`.

现在再回头看看之前的规则,相信大家已经有了更深刻的理解:

  1. Rust 中每一个值都被一个变量所拥有,该变量被称为值的所有者
  2. 一个值同时只能被一个变量所拥有,或者说一个值只能拥有一个所有者
  3. 当所有者(变量)离开作用域范围时,这个值将被丢弃(drop)

如果你在其他语言中听说过术语 浅拷贝(shallow copy)深拷贝(deep copy),那么拷贝指针、长度和容量而不拷贝数据听起来就像浅拷贝,但是又因为 Rust 同时使第一个变量 s1 无效了,因此这个操作被称为 移动(move),而不是浅拷贝。上面的例子可以解读为 s1移动到了 s2 中。那么具体发生了什么,用一张图简单说明:

这样就解决了我们之前的问题,s1 不再指向任何数据,只有 s2 是有效的,当 s2 离开作用域,它就会释放内存。 相信此刻,你应该明白了,为什么 Rust 称呼 let a = b变量绑定了吧?

再来看一段代码:

fn main() {
    let x: &str = "hello, world";
    let y = x;
    println!("{},{}",x,y);
}

这段代码,大家觉得会否报错?如果参考之前的 String 所有权转移的例子,那这段代码也应该报错才是,但是实际上呢?

这段代码和之前的 String 有一个本质上的区别:在 String 的例子中 s1 持有了通过String::from("hello") 创建的值的所有权,而这个例子中,x 只是引用了存储在二进制中的字符串 "hello, world",并没有持有所有权。

因此 let y = x 中,仅仅是对该引用进行了拷贝,此时 yx 都引用了同一个字符串。如果还不理解也没关系,当学习了下一章节 “引用与借用” 后,大家自然而言就会理解。

4.2 Clone(深拷贝)

首先,Rust 永远也不会自动创建数据的 “深拷贝”。因此,任何自动的复制都不是深拷贝,可以被认为对运行时性能影响较小。

如果我们确实需要深度复制 String 中堆上的数据,而不仅仅是栈上的数据,可以使用一个叫做 clone 的方法。

let s1 = String::from("hello");
let s2 = s1.clone();

println!("s1 = {}, s2 = {}", s1, s2);

这段代码能够正常运行,说明 s2 确实完整的复制了 s1 的数据。

如果代码性能无关紧要,例如初始化程序时或者在某段时间只会执行寥寥数次时,你可以使用 clone 来简化编程。但是对于执行较为频繁的代码(热点路径),使用 clone 会极大的降低程序性能,需要小心使用!

4.3 Copy(浅拷贝)

浅拷贝只发生在栈上,因此性能很高,在日常编程中,浅拷贝无处不在。

再回到之前看过的例子:

let x = 5;
let y = x;

println!("x = {}, y = {}", x, y);

但这段代码似乎与我们刚刚学到的内容相矛盾:没有调用 clone,不过依然实现了类似深拷贝的效果 —— 没有报所有权的错误。

原因是像整型这样的基本类型在编译时是已知大小的,会被存储在栈上,所以拷贝其实际的值是快速的。这意味着没有理由在创建变量 y 后使 x 无效(x、y 都仍然有效)。换句话说,这里没有深浅拷贝的区别,因此这里调用 clone 并不会与通常的浅拷贝有什么不同,我们可以不用管它(可以理解成在栈上做了深拷贝)。

Rust 有一个叫做 Copy 的特征,可以用在类似整型这样在栈中存储的类型。如果一个类型拥有 Copy 特征,一个旧的变量在被赋值给其他变量后仍然可用,也就是赋值的过程即是拷贝的过程。

那么什么类型是可 Copy 的呢?可以查看给定类型的文档来确认,这里可以给出一个通用的规则: 任何基本类型的组合可以 Copy ,不需要分配内存或某种形式资源的类型是可以 Copy。如下是一些 Copy 的类型:

  • 所有整数类型,比如 u32
  • 布尔类型,bool,它的值是 truefalse
  • 所有浮点数类型,比如 f64
  • 字符类型,char
  • 元组,当且仅当其包含的类型也都是 Copy 的时候。比如,(i32, i32)Copy 的,但 (i32, String) 就不是
  • 不可变引用 &T ,例如转移所有权中的最后一个例子,但是注意: 可变引用 &mut T 是不可以 Copy的

五 函数传值和返回

将值传递给函数,一样会发生 移动 或者 复制,就跟 let 语句一样,下面的代码展示了所有权、作用域的规则:

fn main() {
    let s = String::from("hello");  // s 进入作用域

    takes_ownership(s);             // s 的值移动到函数里 ...
                                    // ... 所以到这里不再有效

    let x = 5;                      // x 进入作用域

    makes_copy(x);                  // x 应该移动函数里,
                                    // 但 i32 是 Copy 的,所以在后面可继续使用 x

} // 这里, x 先移出了作用域,然后是 s。但因为 s 的值已被移走,
  // 所以不会有特殊操作

fn takes_ownership(some_string: String) { // some_string 进入作用域
    println!("{}", some_string);
} // 这里,some_string 移出作用域并调用 `drop` 方法。占用的内存被释放

fn makes_copy(some_integer: i32) { // some_integer 进入作用域
    println!("{}", some_integer);
} // 这里,some_integer 移出作用域。不会有特殊操作

你可以尝试在 takes_ownership 之后,再使用 s,看看如何报错?例如添加一行 println!(“在move进函数后继续使用s: {}”,s);。


同样的,函数返回值也有所有权,例如:

fn main() {
    let s1 = gives_ownership();         // gives_ownership 将返回值
                                        // 移给 s1

    let s2 = String::from("hello");     // s2 进入作用域

    let s3 = takes_and_gives_back(s2);  // s2 被移动到
                                        // takes_and_gives_back 中,
                                        // 它也将返回值移给 s3
} // 这里, s3 移出作用域并被丢弃。s2 也移出作用域,但已被移走,
  // 所以什么也不会发生。s1 移出作用域并被丢弃

fn gives_ownership() -> String {             // gives_ownership 将返回值移动给
                                             // 调用它的函数

    let some_string = String::from("hello"); // some_string 进入作用域.

    some_string                              // 返回 some_string 并移出给调用的函数
}

// takes_and_gives_back 将传入字符串并返回该值
fn takes_and_gives_back(a_string: String) -> String { // a_string 进入作用域

    a_string  // 返回 a_string 并移出给调用的函数
}

所有权很强大,避免了内存的不安全性,但是也带来了一个新麻烦: 总是把一个值传来传去来使用它。 传入一个函数,很可能还要从该函数传出去,结果就是语言表达变得非常啰嗦,幸运的是,Rust 提供了新功能解决这个问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/407226.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

可变参数、Collections类

一、可变参数 定义:是一种特殊的形参,定义在方法、构造器的形参列表里 格式:数据类型...参数名称 特点:可以不传数据,也可以传一个或者多个数据给它,也可以传一个数组 好处:可以灵活接收数据…

牛客网 HJ34 图片整理

思路: 题目总共涉及三种类型的字符:大写字母,小写字母,数字 我们可以简单归纳为两类:字母类和数字类(采用isalpha和isdigit来判断),创建两个数组来保存这两类字符 因为题目要求按…

图片Base64编码解码的优缺点及应用场景分析

title: 图片Base64编码解码的优缺点及应用场景分析 date: 2024/2/24 14:24:37 updated: 2024/2/24 14:24:37 tags: 图片Base64编码解码HTTP请求优化网页性能加载速度安全性缓存机制 随着互联网的迅猛发展,图片在网页和移动应用中的使用越来越广泛。而图片的传输和加…

【新手易错点】golang中byte和rune

1 总体区别 在Golang中,byte和rune是两种不同类型的数据。简单来说,byte是一个8位的无符号整数类型,而rune则是一个32位的Unicode字符类型。 Byte: 在Golang中,byte类型实际上是uint8的别名,它用来表示8位的无符号整…

【MySQL】连接查询和自连接的学习和总结

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-x4sPmqTXA4yupW1n {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

【Linux】C语言实现超级简单进度条!你不会还不知道吧?

目录 1. 基础准备🎍 1.1 \r&&\n 1.2 缓冲区 2. 进度条1.0🥀 2.1 Process.h 2.2 Process.c 2.3 Main.c 2.4 Makefile 3.进度条 2.0🪺 3.1 Process.h 3.2 Process.c 3.3 Main.c 1. 基础准备🎍 1.1 \r&&…

MobaXterm连接VirtualBox虚拟机

目录 1.下载MobaXterm 2.获取连接配置 3.mobaXterm连接虚拟机 4.更好的方案 1.下载MobaXterm 据说MobaXtrem是远程终端的超级全能神器,官网下载地址:MobaXterm free Xserver and tabbed SSH client for Windows 选择适合你的版本:一个是Home Editi…

apidoc接口文档的自动更新与发布

文章目录 一、概述二、环境准备三、接口文档生成1. 下载源码2. 初始化3.执行 四、文档发布五,配置定时运行六,docker运行 一、概述 最近忙于某开源项目的接口文档整理,采用了apidoc来整理生成接口文档。 apidoc是一个可以将源代码中的注释直…

数据结构D4作业

1.实现单向循环链表的功能 loop.c #include "loop.h" loop_p create_loop() { loop_p H(loop_p)malloc(sizeof(loop)); if(HNULL) { printf("创建失败\n"); return NULL; } H->len0; H->nextH; ret…

Android进阶之旅(第5天)

充实的一天又过去了,今天真的好冷啊,我们这里雪很大,早上最傻逼的决定就是穿了一个短的棉袜出来,漏脚踝,冷成傻子 接下来老规矩,看下昨天计划的完成情况: 今日计划: 1.过bug 2.看…

CentOS7 安装Python3.8

在 CentOS 7 上,按照以下步骤安装 Python 3.8: 添加EPEL仓库:首先安装 EPEL(Extra Packages for Enterprise Linux)仓库 sudo yum install epel-release安装Software Collections (SCL)仓库:随后&#xff0…

搭建私有Git服务器:GitLab部署详解

引言: 为了方便团队协作和代码管理,许多组织选择搭建自己的私有Git服务器。GitLab是一个集成了Git版本控制、项目管理、代码审查等功能的开源平台,是搭建私有Git服务器的理想选择。 目录 引言: 一、准备工作 在开始部署GitLab之…

更新至2022年世界各国数字经济发展相关指标(23个指标)

更新至2022年世界各国数字经济发展相关指标(23个指标) 1、时间:具体指标时间见下文 2、来源:WDI、世界银行、WEF、UNCTAD、SJR、国际电联 3、指标:移动网络覆盖率(2000-2022)、固定电话普及率…

Code-Audit(代码审计)习题记录6-7

介绍: 自己懒得搭建靶场了,靶场地址是 GitHub - CHYbeta/Code-Audit-Challenges: Code-Audit-Challenges为了方便在公网练习,可以随地访问,本文所有的题目均来源于网站HSCSEC-Code Audit 6、习题6 题目内容如下: 源代…

c++入门学习⑦——继承和多态(超级详细版)

目录 前言 继承 继承是什么? 为什么会存在继承? 语法: 一些基本的定义: 三种继承方式: 对象模型 对于构造和析构的顺序 同名函数的处理方式 总结: 静态成员: 定义: 性…

雨云GPU云服务器搭建SD(Stable Diffusion)的教程,搭建自己的AI绘画网站,AIGC

雨云GPU云服务器搭建Stable Diffusion的教程,搭建自己的AI图片生成网站,AIGC Stable Diffusion是什么 Stable Diffusion是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,由CompVis、Stability…

gma 2.0.6 (2024.02.21) 更新日志

安装 gma 2.0.6 pip install gma2.0.6网盘下载: 链接:https://pan.baidu.com/s/1P0nmZUPMJaPEmYgixoL2QQ?pwd1pc8 提取码:1pc8 注意:此版本没有Linux版! 编译gma的Linux虚拟机没有时间修复,本期Linux版继…

普中51单片机学习(AD转换)

AD转换 分辨率 ADC的分辨率是指使输出数字量变化一个相邻数码所需输入模拟电压的变化量。常用二进制的位数表示。例如12位ADC的分辨率就是12位,或者说分辨率为满刻度的1/(2^12)。 一个10V满刻度的12位ADC能分辨输入电压变化最小值是10V1/(2^12 )2.4mV。 量化误差 …

创建者模式(Builder Pattern):构造复杂对象的通用解决方案

文章目录 **一、技术背景与应用场景****为何使用创建者模式?****典型应用场景包括但不限于:** **二、创建者模式定义与结构****三、使用步骤举例**四、优缺点分析总结 一、技术背景与应用场景 创建者模式是一种对象创建型设计模式,它通过将复…

国家建筑装配式内装产业基地在沪成立,副主任单位优积科技协同助推绿色低碳循环发展

上海市室内装饰行业协会装配式内装产业专业委员会成立大会暨“国家建筑装配式内装产业基地”项目启动会于3月21日下午1点在上海光大酒店隆重举行。出席此次活动的包括市装协会长徐国俭,市装协党支部书记兼秘书长丛国梁,市装协装配式内装委主任顾泰昌&…