【AI】人工智能爆发推进器之生成对抗网络

目录

一、什么是生成对抗网络

二、发展历程

三、应用场景

四、小案例:使用GAN生成手写数字

4.1 问题描述

4.2 代码实现


一、什么是生成对抗网络

生成对抗网络(Generative Adversarial Networks,简称GAN)是深度学习中的一种神经网络结构。它由两个神经网络组成:一个生成器网络和一个判别器网络。生成器网络负责生成样本,通过学习训练数据的分布来生成新的数据;而判别器网络则负责判断输入的样本是真实的还是假的,尝试区分生成器生成的数据和真实的训练数据。

在训练过程中,两个网络相互对抗,生成器网络试图欺骗判别器网络,使其无法准确地区分生成的数据和真实的训练数据,而判别器网络则试图正确地识别哪些数据是真实的。通过不断地迭代训练,生成器网络逐渐学习到如何生成更逼真的数据,而判别器网络则逐渐变得更加准确。最终,生成器网络可以生成与训练数据相似的新数据,这些数据可以用于图像生成、视频生成、自然语言处理等领域。

二、发展历程

生成对抗网络的发展历程可以追溯到2014年,当时Ian Goodfellow等人在一篇论文中首次提出了GAN的概念和基本原理。自此以后,GAN在深度学习领域掀起了一场革命,并产生了许多重大的技术突破。

在GAN的初期阶段,由于训练不稳定和模式崩溃等问题,GAN的应用受到了很大的限制。但是随着技术的不断发展,许多研究人员开始探索如何解决这些问题,并提出了一系列的改进和优化方法,如DCGAN、WGAN、CycleGAN等。

其中,DCGAN是第一次将卷积神经网络(CNN)应用于GAN中,并取得了非常好的结果。DCGAN通过改进网络结构和使用批量归一化等技术,提高了GAN训练的稳定性和生成样本的质量。此后,基于DCGAN的架构被广泛应用于许多GAN的变体中。

另外,WGAN提出了一种新的损失函数,即Wasserstein距离,来解决GAN训练不稳定的问题。WGAN在理论上更加严谨,并且在实验中取得了很好的效果。而CycleGAN则是一种用于图像风格转换的GAN,它可以将一个图像域的风格转换为另一个图像域的风格,并且不需要配对的数据。

随着技术的不断发展和改进,GAN的应用领域也在不断扩大和深化。目前,GAN已经被广泛应用于图像生成、视频生成、自然语言处理、语音合成等领域,并取得了非常显著的效果。

三、应用场景

生成对抗网络(GAN)的应用场景非常广泛,以下是几个主要的应用场景和应用案例:

  1. 图像生成:GAN可以根据训练数据集生成新的图像。例如,GAN可以为MNIST手写数字数据集、CIFAR-10小件图片数据集等生成新的案例。更为复杂的是,通过使用深度回旋生成对抗网络(DCGAN)等方法,GAN甚至能生成具有高分辨率和丰富细节的图像,如卧室、人脸等。
  2. 人脸照片生成:这是GAN的一个非常引人注目的应用。Tero Karras等人在2017年发表的论文中展示了使用GAN生成逼真的人脸照片的案例。这些照片非常逼真,甚至当以名人的脸作为输入时,生成的案例具有名人的脸部特征,让人感觉很熟悉。
  3. 物品和场景生成:GAN也可以用于生成物品和场景的图像。例如,可以使用GAN生成新的家具设计、车辆形状或者是不同的建筑风格等。
  4. 图像风格转换:CycleGAN是一种专门用于图像风格转换的GAN。它可以将一个图像域的风格转换为另一个图像域的风格,比如将照片转换为艺术作品,或者将夏天的风景转换为冬天的风景等。这种应用在艺术创作和图像处理等领域具有很大的潜力。
  5. 数据增强:在机器学习和深度学习中,常常需要大量的标注数据来训练模型。然而,获取足够的标注数据往往是困难的。在这种情况下,可以使用GAN来生成新的标注数据,从而增加训练数据集的大小,提高模型的性能。
  6. 文本生成:除了图像生成外,GAN也可以用于文本生成。例如,可以使用GAN生成新的文章、对话或者是诗歌等。这种应用在自然语言处理等领域具有很大的潜力。

以上只是GAN的一部分应用场景和案例,实际上,随着技术的不断发展,GAN的应用领域还在不断扩大和深化。

四、小案例:使用GAN生成手写数字

4.1 问题描述

在这个案例中,我们将使用GAN来生成手写数字。我们将使用MNIST数据集作为训练数据,该数据集包含大量手写数字的图像和对应的标签。我们的目标是训练一个GAN模型,使其能够生成与MNIST数据集中的手写数字相似的新图像。

4.2 代码实现

以下是一个简单的Python代码片段,用于实现这个案例:

import tensorflow as tf  
from tensorflow.keras.layers import Dense, Flatten, Reshape  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.datasets import mnist  
from tensorflow.keras.utils import to_categorical  
  
# 加载MNIST数据集  
(train_images, train_labels), (_, _) = mnist.load_data()  
train_images = train_images.reshape(-1, 28, 28, 1) / 255.0  
train_labels = to_categorical(train_labels)  
  
# 定义生成器网络  
generator = Sequential()  
generator.add(Dense(7 * 7 * 256, use_bias=False, input_shape=(100,)))  
generator.add(tf.keras.layers.BatchNormalization())  
generator.add(tf.keras.layers.LeakyReLU())  
generator.add(Reshape((7, 7, 256)))  
generator.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))  
generator.add(tf.keras.layers.BatchNormalization())  
generator.add(tf.keras.layers.LeakyReLU())  
generator.add(tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))  
generator.add(tf.keras.layers.BatchNormalization())  
generator.add(tf.keras.layers.LeakyReLU())  
generator.add(tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False))  
generator.add(tf.keras.layers.Activation('tanh'))  
  
# 定义判别器网络  
discriminator = Sequential()  
discriminator.add(tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]))  
discriminator.add(tf.keras.layers.LeakyReLU())  
discriminator.add(tf.keras.layers.Dropout(0.3))  
discriminator.add(tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))  
discriminator.add(tf.keras.layers.LeakyReLU())  
discriminator.add(tf.keras.layers.Dropout(0.3))  
discriminator.add(Flatten())  
discriminator.add(Dense(1))  
  
# 定义GAN模型(生成器和判别器的组合)  
gan = Sequential([generator, discriminator])  
gan.compile(loss='binary_crossentropy', optimizer='adam')  
  
# 训练GAN模型(此处仅展示部分训练过程)  
for epoch in range(10000):  
    # 生成随机噪声作为生成器的输入  
    noise = tf.random.normal([100, 100])  
    generated_images = generator(noise)  
    image_batch = train_images[train_index: train_index + batch_size]  
    labels = tf.concat([tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0)  
    d_loss = discriminator.train_on_batch(tf.concat([image_batch, generated_images], axis=0), labels)  
    noise = tf.random.normal([batch_size, 100])  
    with tf.GradientTape() as gen_tape:  
        generated_images = generator(noise)  
        real_output = discriminator(image_batch)  
        fake_output = discriminator(generated_images)  
        gen_loss = tf.reduce_mean(real_output) - tf.reduce_mean(fake_output)  
    gradients = gen_tape.gradient(gen_loss, generator.trainable_variables)  
    optimizer = tf.optimizers.Adam()  
    optimizer.apply_gradients(zip(gradients, generator.trainable_variables))

这个代码片段展示了如何使用TensorFlow和Keras来构建和训练一个简单的GAN模型,用于生成手写数字图像。代码中的生成器网络负责生成新的图像,而判别器网络则负责判断生成的图像是否真实。通过不断地迭代训练,生成器网络逐渐学习到如何生成更逼真的手写数字图像。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/272661.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode—54.螺旋矩阵【中等】

2023每日刷题&#xff08;七十&#xff09; Leetcode—54.螺旋矩阵 实现代码 class Solution { public:vector<int> spiralOrder(vector<vector<int>>& matrix) {vector<int> ans;int m matrix.size();int n matrix[0].size();int row 0, col…

虚拟环境和Pycharm中均有transforms仍报ModuleNotFoundError:No module named ‘transformers‘

问题&#xff1a;运行新模型&#xff0c;配置了新环境&#xff0c;下载了包后&#xff0c;仍然报ModuleNotFoundError&#xff1a;No module named transformers 错误。 查看Pycharm解释器&#xff1a; 没问题&#xff01;&#xff01;&#xff01;&#xff1f; 命令行查看虚…

阿赵UE学习笔记——5、创建关卡元素

阿赵UE学习笔记目录 大家好&#xff0c;我是阿赵。   之前介绍了从空白模板创建关卡&#xff0c;接下来尝试着在这个空白的世界里面&#xff0c;创建一些内容。 一、创建地面 1、创建面片作为地面 创建——形状——平面&#xff0c;可以创建一个面片 在细节面板设置合适的…

【广州华锐互动】VR科技科普展厅平台:快速、便捷地创建出属于自己的虚拟展馆

随着科技的不断进步&#xff0c;虚拟现实(VR)技术已经在许多领域取得了显著的成果。尤其是在展馆设计领域&#xff0c;VR科技科普展厅平台已经实现了许多令人瞩目的新突破。 VR科技科普展厅平台是广州华锐互动专门为企业和机构提供虚拟展馆设计和制作的在线平台。通过这个平台&…

【微服务核心】Spring Boot

Spring Boot 文章目录 Spring Boot1. 简介2. 开发步骤3. 配置文件4. 整合 Spring MVC 功能5. 整合 Druid 和 Mybatis6. 使用声明式事务7. AOP整合配置8. SpringBoot项目打包和运行 1. 简介 SpringBoot&#xff0c;开箱即用&#xff0c;设置合理的默认值&#xff0c;同时也可以…

设计模式-单例模式(结合JVM基础知识)

1.定义介绍 所谓单例模式&#xff0c;是指在程序运行时&#xff0c;整个JVM中只有一个该类的实例对象 2. 单例模式的优点 复用性高&#xff0c;节省内存资源。类的加载、连接、初始化、使用都要占用虚拟机内存空间&#xff0c;因此&#xff0c;频繁创建对象会造成资源浪费&a…

文件夹共享(普通共享和高级共享的区别)防火墙设置(包括了jdk安装和Tomcat)

文章目录 一、共享文件1.1为什么需要配置文件夹共享功能&#xff1f;1.2配置文件共享功能1.3高级共享和普通共享的区别&#xff1a; 二、防火墙设置2.1先要在虚拟机上安装JDK和Tomcat供外部访问。2.2设置防火墙&#xff1a; 一、共享文件 1.1为什么需要配置文件夹共享功能&…

IDEA使用之打包Jar,指定main方法

前言 在某些场景&#xff0c;可能会遇到将非Spring项目打包的情况&#xff0c;我们不需要Tomcat服务器部署&#xff0c;只需要执行指定的main方法即可&#xff0c;这种情况打包成jar就比较方便了。 操作步骤 打包结果默认在项目的out目录下 使用 java -jar xxx.jar

企业微信自建应用获取用户信息

一.前言 开发企业微信自建应用的时候难免会有获取企微个人信息的业务需求,这篇博客将详细说明企微自建应用获取userId的具体流程. 二.基本概念介绍 2.1 corpid 每个企业都拥有唯一的corpid&#xff0c;获取此信息可在管理后台“我的企业”&#xff0d;“企业信息”下查看“企业…

(1)llvm学习词法分析器

首先是Token取值 下面两个值记录当前识别出来的token单元的字面量 首先是空字符&#xff0c;然后如果是空字符&#xff0c;就读下一个字符&#xff0c;知道这个字符不是空为止&#xff0c;也就是LastChar出循环的时候是下一个不为空的字符,下面两个值是记录实际值用于后续处理 …

VR渲染器怎么用之自适应图像采样器,可解决渲染黑图问题

大家好&#xff0c;相信刚接触到vr渲染器时&#xff0c;会vr的图像采样器感到迷茫&#xff0c;如何使用图像采样器&#xff1f;图像采样器有何用呢&#xff1f; 今天便为大家讲解vr中的自适应DMC图像采样器的运用。 说明&#xff1a;高版本渲染器中的渲染块整合了原有的“固定…

PYTHON入门级游戏开发:宇宙飞船游戏两万字详析

手讲解超详细python入门游戏项目‘打外星飞船’手把&#xff08;一&#xff09; 由于内容比较多&#xff0c;这里会分为五篇文章来讲解&#xff0c;从页面的创建、飞船控制、射击、外星人创建、射杀外星人五片来展开。 做一个窗口和设置响应用户 import sysimport pygame&qu…

STM32逆变器方案

输入电压&#xff1a; 额定输入电压&#xff1a;DC110V 输入电压范围&#xff1a;DC77-137.5V 额定输出参数 电压&#xff1a;200V5%&#xff08;200VAC~240VAC 可调&#xff09; 频率&#xff1a; 42Hz0.5Hz&#xff08;35-50 可调&#xff09; 额定输出容量&#xff1a;1…

CentOS7搭建Elasticsearch与Kibana服务

1.部署单点es 1.1.创建网络 因为我们还需要部署kibana容器&#xff0c;因此需要让es和kibana容器互联。这里先创建一个网络&#xff1a; docker network create es-net 1.2拉取elasticsearch镜像 docker pull elasticsearch:7.11.1 1.3.运行 运行docker命令&#xff0c;部…

致远互联FE协作办公平台 editflow_manager.jsp SQL注入漏洞

漏洞描述 致远互联FE协作办公平台是一款为企业提供全方位协同办公解决方案的产品。它集成了多个功能模块&#xff0c;旨在帮助企业实现高效的团队协作、信息共享和文档管理。致远互联FE协作办公平台editflow_manager存在sql注入漏洞&#xff0c;攻击者可以获得敏感信息。 资产…

Vue框架引入Element-Ui

首先已经创建好了 Vue 框架&#xff0c;安装好了 node.js。 没有完成的可按照此博客搭建&#xff1a;搭建Vue项目 之后打开终端&#xff0c;使用命令。 1、命令引入 npm i element-ui -S2、package.json 查看版本 在 package.json 文件里可查看下载好的依赖版本。 3、在 ma…

Selenium自动化测试-设置元素等待

selenium中有三种时间等待&#xff1a; 强制等待&#xff1a;sleep 隐式等待&#xff1a;implicitly_wait 显示等待&#xff1a;WebDriverWait 1.sleep 让程序暂停运行一定时间&#xff0c;等待时间到达后继续运行。 使用sleep&#xff0c;需先导入time模块&#xff0c;im…

002、使用 Cargo 创建新项目,打印 Hello World

1. Cargo 简介 Cargo 是 Rust 的构建系统和包管理工具&#xff0c;比如构建代码、下载依赖的库、构建这些库等等。在安装 Rust 时&#xff0c;Cargo也会一起安装。 2. 创建新项目的具体步骤 步骤1&#xff1a; 我们在桌面新建一个文件夹&#xff0c;用于存放后面练习用的代码文…

vector的erase()方法遍历删除元素迭代器失效问题、及删除最后一个元素迭代器失效问题)

1.删除指定范围的元素 vector删除元素之pop_back(),erase(),remove() 向量容器vector的成员函数pop_back()可以删除最后一个元素. 而函数erase()可以删除由一个iterator指出的元素&#xff0c;也可以删除一个指定范围的元素。 还可以采用通用算法remove()来删除vector容器中的…

数字电子技术 一天速成

文章目录 一、数制与编码1. 数制转换2. BCD编码 二、逻辑代数1. 常见逻辑运算及逻辑门 三、化简逻辑表达式1. 卡诺图 求 表达式2. 表达式 画 卡诺图3. 卡诺图 化简 表达式4. 公式法 化简 表达式 ⭐⭐5. 表达式 求 反函数6. 卡诺图 求 反函数 四、组合逻辑电路的分析和设计1. 逻…
最新文章