[C++] STL_priority_queue(优先级队列) 的使用及底层的模拟实现,容器适配器,deque的原理介绍

在这里插入图片描述

文章目录

  • 1、priority_queue
    • 1.1 priority_queue的介绍和使用
    • 1.2 priority_queue的使用
      • 模拟实现:
  • 2、容器适配器
    • 2.1 什么是适配器
    • 2.2 STL标准库中stack和queue的底层结构
  • 3、deque
    • 3.1 deque的原理介绍
    • 3.2 deque的缺陷
  • 4、为什么选择deque作为stack和queue的底层默认容器

1、priority_queue

1.1 priority_queue的介绍和使用

priority_queue文档介绍
在这里插入图片描述

翻译:
1. 优先队列是一种容器适配器 ,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。
2. 此上下文类似于在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。
3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
empty():检测容器是否为空
size():返回容器中有效元素个数
front():返回容器中第一个元素的引用

push_back():在容器尾部插入元素
pop_back():删除容器尾部元素

5. 标准容器类vector和deque满足这些需求默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用 vector。
6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。

1.2 priority_queue的使用

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此 priority_queue就是堆加粗样式 所有需要用到堆的位置,都可以考虑使用priority_queue。注意: 默认情况下priority_queue是大堆。

函数声明接口说明
priority_queue()/priority_queue(first,last)构造一个空的优先级队列
empty( )检测优先级队列是否为空,是返回true,否则返回false
top( )返回优先级队列中最大(最小元素),即堆顶元素
push()在优先级队列中插入元素x
pop()删除优先级队列中最大(最小)元素,即堆顶元素

注意:
1、默认情况下,priority_queue是大堆。

#include <vector>
#include <queue>
#include <functional> // greater算法的头文件

int main()
{
    // 默认情况下,创建的是大堆,其底层按照小于号比较
    vector<int> v{ 3,2,7,6,0,4,1,9,8,5 };
    priority_queue<int> q1;
    for (auto& e : v) q1.push(e);
    while (!q1.empty())
    {
        cout << q1.top() << " ";
        q1.pop();
    }
    cout << endl;

    // 如果要创建小堆,将第三个模板参数换成greater比较方式
    priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());
    while (!q2.empty())
    {
        cout << q2.top() << " ";
        q2.pop();
    }
    cout << endl;

    return 0;
}

在这里插入图片描述

2、如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供 > 或者 < 的重载。

class Date
{
public:
    Date(int year = 1900, int month = 1, int day = 1)
    	: _year(year)
    	, _month(month)
    	, _day(day)
    {}
    bool operator<(const Date& d)const
    {
    	return (_year < d._year) ||
    		(_year == d._year && _month < d._month) ||
    		(_year == d._year && _month == d._month && _day < d._day);
    }
    bool operator>(const Date& d)const
    {
    	return (_year > d._year) ||
    		(_year == d._year && _month > d._month) ||
    		(_year == d._year && _month == d._month && _day > d._day);
    }
    friend ostream& operator<<(ostream& _cout, const Date& d)
    {
    	_cout << d._year << "-" << d._month << "-" << d._day;
    	return _cout;
    }
private:
    int _year;
    int _month;
    int _day;
};

void TestPriorityQueue()
{
	// 大堆,需要用户在自定义类型中提供<的重载
	priority_queue<Date> q1;
	q1.push(Date(2018, 10, 29));
	q1.push(Date(2018, 10, 28));
	q1.push(Date(2018, 10, 30));
	cout << q1.top() << endl;

    // 如果要创建小堆,需要用户提供>的重载
	priority_queue<Date, vector<Date>, greater<Date>> q2;
	q2.push(Date(2018, 10, 29));
	q2.push(Date(2018, 10, 28));
	q2.push(Date(2018, 10, 30));
	cout << q2.top() << endl;
}

int main()
{
    TestPriorityQueue();
    
    return 0;
}

模拟实现:

我们刚已经了解到,priority_queue就是堆,并且默认是大堆,底层容器封装的是vector,因此我们模拟实现priority_queue也是比较简单的。

#include<vector>
#include<functional>
using namespace std;

namespace lcx
{
    // 仿函数
    template <class T>
    class Less
    {
    public:
        bool operator()(const T& x, const T& y)
        {
            return x < y;
        }
    };

    template <class T>
    class Greater
    {
    public:
        bool operator()(const T& x, const T& y)
        {
            return x > y;
        }
    };

    template <class T, class Container = vector<T>, class Compare = Greater<T>>
    class priority_queue
    {
    public:
        priority_queue()
        {}

        template <class InputIterator>
        priority_queue(InputIterator first, InputIterator last)
            :_con(first, last)
        {
            for (int i = (_con.size() - 1 - 1) / 2; i >= 0; i--)
            {
                adjust_down(i);
            }
        }

        bool empty() const
        {
            return _con.empty();
        }

        size_t size() const
        {
            return _con.size();
        }

        const T& top() const
        {
            return _con[0];
        }

        void push(const T& x)
        {
            _con.push_back(x);
            adjust_up(_con.size() - 1);
        }

        void pop()
        {
            swap(_con[0], _con[_con.size() - 1]);
            _con.pop_back();
            adjust_down(0);
        }
    private:
        void adjust_up(int child)
        {
            int parent = (child - 1) / 2;
            while (child > 0)
            {
                //if (_con[child] > _con[parent])
                if(comp(_con[child], _con[parent]))
                {
                    swap(_con[child], _con[parent]);
                    child = parent;
                    parent = (child - 1) / 2;
                }
                else break;
            }
        }

        void adjust_down(size_t parent)
        {
            size_t child = parent * 2 + 1;
            while (child < _con.size())
            {
                //if (child + 1 < _con.size()
                //      && _con[child + 1] > _con[child])
                if(child + 1 < _con.size()
                    && comp(_con[child + 1], _con[child]))
                {
                    child++;
                }

                //if (_con[child] > _con[parent])
                if (comp(_con[child], _con[parent]))
                {
                    swap(_con[child], _con[parent]);
                    parent = child;
                    child = parent * 2 + 1;
                }
                else break;
            }
        }

    private:
        Container _con;
        Compare comp;
    };
};

这里如果还有对堆不熟悉的同学我们可以看看我的另外一篇文章,专门讲解堆的:C语言实现堆详细版本

2、容器适配器

2.1 什么是适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。

2.2 STL标准库中stack和queue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器, 这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,比如:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、deque

3.1 deque的原理介绍

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。

在这里插入图片描述
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:
在这里插入图片描述
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:
在这里插入图片描述
那deque是如何借助其迭代器维护其假想连续的结构呢?
在这里插入图片描述

3.2 deque的缺陷

与vector比较,deque的优势是:头部插入和删除时,**不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,**因此其效率是必vector高的。
与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。
deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下。
而序列式场景中,可能需要经常遍历,因此
在实际中,需要线性结构时,大多数情况下优先考虑vector和list
,deque的应用并不多,而
目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。

4、为什么选择deque作为stack和queue的底层默认容器

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;
queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:
1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。
结合了deque的优点,而完美的避开了其缺陷。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/235665.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

11月客户文章盘点——累计IF 150.5

凌恩生物以打造国内一流生物公司为目标&#xff0c;在科研测序领域深耕不辍&#xff0c;吸纳多名在生物信息高级技术人员的加盟&#xff0c;参与并完成多个高科技项目。现已在宏组学、基因组、表观遗传以及蛋白代谢等多组学及联合分析领域积累了深厚经验&#xff0c;打造出成熟…

Qt图形设计

#include "mywidget.h"MyWidget::MyWidget(QWidget *parent): QWidget(parent) {//窗口相关设置//设置窗口标题this->setWindowTitle("王者荣耀");//设置窗口图标this->setWindowIcon(QIcon("C:\\Users\\28033\\Pictures\\Saved Pictures\\pict…

STM32超声波——HC_SR04

文章目录 一.超声波图片二.时序图三.超声波流程四.单位换算五.取余计算六.换算距离七.超声波代码 一.超声波图片 测量距离&#xff1a;2cm——400cm 二.时序图 (1).以下时序图要先提供一个至少10us的脉冲触发信号&#xff0c;告诉单片机我准备好了&#xff0c;然后该超声波…

最简单的pixel刷机和安装面具、lsposed

一 下载手机对应的系统 1&#xff0c;手机usb连接然后重启进入Fastboot模式&#xff1a;adb reboot bootloader2&#xff0c;找到你下载的系统&#xff0c;Windows 系统 直接运行 flash-all.bat上图 &#xff1a;左边就是安卓11和12的系统&#xff0c;右边是对应的手机型号 下…

思科最新版Cisco Packet Tracer 8.2.1安装

思科最新版Cisco Packet Tracer 8.2.1安装 一. 注册并登录CISCO账号二. 下载 Cisco Packet Tracer 8.2.1三. 安装四. 汉化五. cisco packet tracer教学文档六. 正常使用图 前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新…

【LeetCode:1631. 最小体力消耗路径 | BFS + 二分】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

西南科技大学数字电子技术实验三(MSI逻辑器件设计组合逻辑电路及FPGA的实现)FPGA部分

一、实验目的 进一步掌握MIS(中规模集成电路)设计方法。通过用MIS译码器、数据选择器实现电路功能,熟悉它们的应用。进一步学习如何记录实验中遇到的问题及解决方法。二、实验原理 1、4位奇偶校验器 Y=S7i=0DiMi D0=D3=D5=D6=D D1=D2=D4=D7= `D 2、组合逻辑电路 F=A`B C …

ssm基于面向对象的学生事务处理系统分析与设计论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本学生事务处理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息…

python+gdal地理坐标转投影坐标

1 前言 地理坐标系&#xff0c;是使用三维球面来定义地球表面位置&#xff0c;以实现通过经纬度对地球表面点位引用的坐标系。 地理坐标系经过地图投影操作后就变成了投影坐标系。而地图投影是按照一定的数学法则将地球椭球面上点的经维度坐标转换到平面上的直角坐标。 2 流程…

RabbitMQ学习二

RabbitMQ学习二 发送者的可靠性生产者连接重试机制生产者确认机制开启生产者确认定义ReturnCallback定义confirmCallback MQ的可靠性交换机和队列持久化消息持久化LazyQueue控制台配置Lazy模式代码配置Lazy模式 消费者的可靠性失败重试机制失败处理策略业务幂等性唯一消息ID业务…

Hiera实战:使用Hiera实现图像分类任务(二)

文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度&#xff0c;DP多卡&#xff0c;EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上…

龙良曲PyTorch入门到实战 深度学习

文章目录 笔记激活函数与Loss的梯度lesson5 手写数字识别问题lesson6 基本数据类型lesson7 创建tensorlesson8 索引和切片lesson9 维度变换lesson10 broadcastinglesson11 分割和合并lesson12 数学运算lesson13 Tensor统计lesson14 Tensor高阶lesson16 什么是梯度lesson17 常见…

初识Ceph --组件、存储类型、存储原理

目录 ceph组件存储类型块存储文件存储对象存储 存储过程 ceph Ceph&#xff08;分布式存储系统&#xff09;是一个开源的分布式存储系统&#xff0c;设计用于提供高性能、高可靠性和可扩展性的存储服务&#xff0c;可以避免单点故障&#xff0c;支持块存储、对象存储以及文件系…

Java项目-瑞吉外卖Day2

完善登录功能&#xff1a; 完善未登录不能访问/backend/index.html。使用拦截器或过滤器。 创建过滤器。 重写doFilter方法。 查看是否过滤成功。 处理流程如下&#xff1a; 添加员工功能&#xff1a; 点击保存&#xff0c;可以看到请求信息。 再看前端代码&a…

使用React 18、Echarts和MUI实现温度计

关键词 React 18 Echarts和MUI 前言 在本文中&#xff0c;我们将结合使用React 18、Echarts和MUI&#xff08;Material-UI&#xff09;库&#xff0c;展示如何实现一个交互性的温度计。我们将使用Echarts绘制温度计的外观&#xff0c;并使用MUI创建一个漂亮的用户界面。 本文…

MySQL - InnoDB 和 MyISAM 的索引实现的区别

InnoDB 和 MyISAM 底层都是 B 树的实现&#xff0c;但是二者却完全不同 。 主键索引文件存储不同 MyISAM 引擎的索引文件和数据文件是分离的&#xff0c;而 InnoDB 引擎的索引文件和数据文件是不分离的。 MyISAM 引擎的叶子节点存储的是数据文件的地址&#xff0c;而 InnoDB 的…

textarea文本框回车enter的时候自动提交表单,根据内容自动高度

切图网近期一个bootstrap5仿chatgpt页面的项目遇到的&#xff0c;textarea文本框回车enter的时候自动提交表单&#xff0c;根据内容自动高度&#xff0c;代码如下&#xff0c;亲测可用。 <textarea placeholder"Message ChatGPT…" name"" rows"&q…

Qt之Ui样式表不影响子类的配置

Qt之Ui样式表不影响子类的配置 问题 在ui界面上布局时&#xff0c;当对容器进行样试设计时&#xff0c;会对容器内其它成员对象也进行了修改 分析 对应*.ui文件内容 从这个写法来看&#xff0c;它的样式属性会影响其成员对象样式属性。 解决方法 在容器的样式表中写时适…

离散型随机变量的分布律(也称概率质量函数:probability mass function, PMF)

设是一个离散型随机变量&#xff0c;可能的取值为&#xff0c;取各个值的概率记为&#xff1a; &#xff08;1&#xff09; 其中 并且&#xff0c; 公式&#xff08;1&#xff09;就称为离散型随机变量的分布律&#xff0c;也称概率质量函数&#xff1a;probability ma…

前端怎么调用node接口---小白

1.基于node搭建express后端脚手架&#xff1a;基于node搭建express后端脚手架 2.在node里边写一个接口 // 引入express const express require(express) // 创建实例 const app express() // 创建监听端口 const port 3000 // 定义接口 app.get(/api/getData,(req,res) &g…
最新文章